p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.49C25, C42.550C23, C24.489C23, C23.121C24, C4.1852+ 1+4, C4⋊Q8⋊80C22, (C4×D4)⋊99C22, (C2×C4).51C24, (C4×Q8)⋊89C22, C4⋊D4⋊67C22, C4⋊C4.463C23, (C2×C42)⋊49C22, C22⋊Q8⋊81C22, (C2×D4).295C23, C4.4D4⋊69C22, C22⋊C4.79C23, (C2×Q8).427C23, C42.C2⋊46C22, C4○2(C22.29C24), C4○3(C22.32C24), C22.32C24⋊30C2, C22.19C24⋊16C2, C42⋊C2⋊92C22, C22.29C24⋊38C2, C42⋊2C2⋊27C22, C22≀C2.22C22, C4⋊1D4.180C22, C2.8(C2.C25), (C23×C4).592C22, C2.14(C2×2+ 1+4), C22.26C24⋊28C2, (C22×C4).1188C23, (C22×D4).588C22, C22.D4⋊39C22, C4○2(C22.36C24), C4○2(C22.31C24), C4○2(C23.41C23), C4○2(C22.34C24), C23.41C23⋊29C2, C22.31C24⋊31C2, C22.36C24⋊46C2, C23.36C23⋊19C2, C22.34C24⋊31C2, (C2×C4×D4)⋊77C2, (C4×C4○D4)⋊18C2, (C2×C4)⋊5(C4○D4), C4.76(C2×C4○D4), (C2×C4○D4)⋊20C22, C22.12(C2×C4○D4), C2.23(C22×C4○D4), (C2×C4⋊C4).952C22, (C2×C22⋊C4).537C22, (C2×C4)○(C22.34C24), (C2×C4)○(C23.41C23), SmallGroup(128,2192)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.49C25
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=1, d2=a, g2=b, ab=ba, dcd-1=fcf=ac=ca, ede=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cg=gc, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 884 in 570 conjugacy classes, 390 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊1D4, C4⋊Q8, C23×C4, C22×D4, C2×C4○D4, C2×C4×D4, C4×C4○D4, C22.19C24, C23.36C23, C22.26C24, C22.29C24, C22.31C24, C22.32C24, C22.34C24, C22.36C24, C23.41C23, C22.49C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C25, C22×C4○D4, C2×2+ 1+4, C2.C25, C22.49C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 13)(2 14)(3 15)(4 16)(5 20)(6 17)(7 18)(8 19)(9 27)(10 28)(11 25)(12 26)(21 29)(22 30)(23 31)(24 32)
(1 23)(2 22)(3 21)(4 24)(5 27)(6 26)(7 25)(8 28)(9 20)(10 19)(11 18)(12 17)(13 31)(14 30)(15 29)(16 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 2)(3 4)(5 8)(6 7)(9 28)(10 27)(11 26)(12 25)(13 14)(15 16)(17 18)(19 20)(21 32)(22 31)(23 30)(24 29)
(1 13)(2 14)(3 15)(4 16)(5 20)(6 17)(7 18)(8 19)(9 25)(10 26)(11 27)(12 28)(21 31)(22 32)(23 29)(24 30)
(1 17 13 6)(2 18 14 7)(3 19 15 8)(4 20 16 5)(9 32 27 24)(10 29 28 21)(11 30 25 22)(12 31 26 23)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,13)(2,14)(3,15)(4,16)(5,20)(6,17)(7,18)(8,19)(9,27)(10,28)(11,25)(12,26)(21,29)(22,30)(23,31)(24,32), (1,23)(2,22)(3,21)(4,24)(5,27)(6,26)(7,25)(8,28)(9,20)(10,19)(11,18)(12,17)(13,31)(14,30)(15,29)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(5,8)(6,7)(9,28)(10,27)(11,26)(12,25)(13,14)(15,16)(17,18)(19,20)(21,32)(22,31)(23,30)(24,29), (1,13)(2,14)(3,15)(4,16)(5,20)(6,17)(7,18)(8,19)(9,25)(10,26)(11,27)(12,28)(21,31)(22,32)(23,29)(24,30), (1,17,13,6)(2,18,14,7)(3,19,15,8)(4,20,16,5)(9,32,27,24)(10,29,28,21)(11,30,25,22)(12,31,26,23)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,13)(2,14)(3,15)(4,16)(5,20)(6,17)(7,18)(8,19)(9,27)(10,28)(11,25)(12,26)(21,29)(22,30)(23,31)(24,32), (1,23)(2,22)(3,21)(4,24)(5,27)(6,26)(7,25)(8,28)(9,20)(10,19)(11,18)(12,17)(13,31)(14,30)(15,29)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(5,8)(6,7)(9,28)(10,27)(11,26)(12,25)(13,14)(15,16)(17,18)(19,20)(21,32)(22,31)(23,30)(24,29), (1,13)(2,14)(3,15)(4,16)(5,20)(6,17)(7,18)(8,19)(9,25)(10,26)(11,27)(12,28)(21,31)(22,32)(23,29)(24,30), (1,17,13,6)(2,18,14,7)(3,19,15,8)(4,20,16,5)(9,32,27,24)(10,29,28,21)(11,30,25,22)(12,31,26,23) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,13),(2,14),(3,15),(4,16),(5,20),(6,17),(7,18),(8,19),(9,27),(10,28),(11,25),(12,26),(21,29),(22,30),(23,31),(24,32)], [(1,23),(2,22),(3,21),(4,24),(5,27),(6,26),(7,25),(8,28),(9,20),(10,19),(11,18),(12,17),(13,31),(14,30),(15,29),(16,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,2),(3,4),(5,8),(6,7),(9,28),(10,27),(11,26),(12,25),(13,14),(15,16),(17,18),(19,20),(21,32),(22,31),(23,30),(24,29)], [(1,13),(2,14),(3,15),(4,16),(5,20),(6,17),(7,18),(8,19),(9,25),(10,26),(11,27),(12,28),(21,31),(22,32),(23,29),(24,30)], [(1,17,13,6),(2,18,14,7),(3,19,15,8),(4,20,16,5),(9,32,27,24),(10,29,28,21),(11,30,25,22),(12,31,26,23)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2M | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | ··· | 4AD |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 | C2.C25 |
kernel | C22.49C25 | C2×C4×D4 | C4×C4○D4 | C22.19C24 | C23.36C23 | C22.26C24 | C22.29C24 | C22.31C24 | C22.32C24 | C22.34C24 | C22.36C24 | C23.41C23 | C2×C4 | C4 | C2 |
# reps | 1 | 1 | 2 | 4 | 4 | 4 | 2 | 1 | 4 | 4 | 4 | 1 | 8 | 2 | 2 |
Matrix representation of C22.49C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 |
0 | 0 | 0 | 0 | 2 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 2 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,3,0,0,0,0,1,4,0,0,0,0,0,0,4,2,0,0,0,0,4,1],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,3,0,0,0,0,0,4,0,0,0,0,0,0,4,2,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2] >;
C22.49C25 in GAP, Magma, Sage, TeX
C_2^2._{49}C_2^5
% in TeX
G:=Group("C2^2.49C2^5");
// GroupNames label
G:=SmallGroup(128,2192);
// by ID
G=gap.SmallGroup(128,2192);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,232,1430,387,1123,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=1,d^2=a,g^2=b,a*b=b*a,d*c*d^-1=f*c*f=a*c=c*a,e*d*e=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*g=g*c,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations